GUT-CP, Millsian, Molecular modelling

DNA visualisation using Millsian… the future of molecular modelling?(Genetics, pharmaceuticals, neuroscience… psychedelics! :D)

“I’ll be honest from the start and say… ‘my interest in Millsian Inc. is purely recreational! 😀 Dimethyltryptamine, psilocybin, Lysergic acid diethylamide’…”
“No, seriously though… those of you that are transhumanist! Wish to extend the human life into the hundred of years…”

Millsian Inc. is a revolutionary software developed by Randell Mills, which uses his classical GUT-CP theory to solve structures of not just simple atoms and molecules, but potentially ALL molecular structures (infinitely?) ranging from organic molecules to complex compounds (DNA to proteins etc.) . It uses classical Maxwell and Newton laws at an atomic level, and has been significantly more accurate in it’s predictions than ‘Quantum’ laws. Thus it can accurately build complex 3D structures and precisely calculate the total bond energy and the heat of formation.
Further information from the inventor can be found at and
Many believe this to be the future of molecular modelling, having profound implications in industries and areas of research such as pharmaceuticals, drug development, genetics, chemistry, material science… again… try and fathom what is being laid out here and realise the future possibilities are limitless!

hyd Insulin-fl-replace
Total Bond Energies of Exact Classical Solutions of Molecules Generated by Millsian 1.0 Compared to Those Computed Using Modern 3-21G and 6-13G* Basis Sets
R. L. Mills, B. Holverstott, B. Good, N. Hogle, A. Makwana

hyd classical to quantum

The case for Millsian physics (hydrogenicpower)


hyd physical compared

“Life, down to the last electron” (Brett Holverstott)
The phosphate strands, joined by a ladder of base pairs, spirals around one another in a double-helix. Seeing the structure visualized with Mills’s theory was not just a milestone for our software, a satisfying culmination of a year of development work, nut an extraordinary experience of beauty.
The strands seemed to be dancers, spinning, their energy and momentum thrusting them outward, a free arm flying through the air, the other locked with that of their partner.
Yes, I fell in love with the DNA molecule in that moment. Nature in all her indifference to human life, is beautiful in the abstract form of her physical architecture we find reflections of our own memory and experience.
Practically speaking, the ability to represent the exact the exact distribution of charge on the surface of the molecule is a huge leap forward from the approximations of quantum mechanics that are available in today’s molecular modelling software.
Mills’s theory should allow us to better predict chemical reactivity, and better predict how proteins fold. It should aid drug-discovery programs aiming to find molecules that fit reactive sites.  These are improvement that expect will allow great leaps in the pharmaceutical industry in years to come.” (Randell Mills and the Search for Hydrino Energy – Brett Holverstott)


My interest is in the future of genetic research and our understanding of DNA! (considering the little miracle we call DNA is still throwing us huge surprises and complete mysteries)
Baylor researchers unravel mystery of DNA conformation
“DNA is not a stiff or static. It is dynamic with high energy. It exists naturally in a slightly underwound state and its status changes in waves generated by normal cell functions such as DNA replication, transcription, repair and recombination. DNA is also accompanied by a cloud of counterions (charged particles that neutralize the genetic material’s very negative charge) and, of course, the protein macromolecules that affect DNA activity.”
BREAKING: Scientists Have Confirmed a New DNA Structure Inside Human Cells
It’s not just the double helix!
“As Zeraati explains, the answers could be really important – not just for the i-motif, but for A-DNA, Z-DNA, triplex DNA, and cruciform DNA too.
“These alternative DNA conformations might be important for proteins in the cell to recognise their cognate DNA sequence and exert their regulatory functions,” Zeraati explained to ScienceAlert.”
DNA Hydrogels for Biomedical Applications
“DNA can be used as the only component of a hydrogel, the backbone or a cross-linker that connects the main building blocks and forms hybrid hydrogels through chemical reactions or physical entanglement. Responsive constructs of DNA with superior mechanical properties can undergo a macroscopic change induced by various triggers, including changes in ionic strength, temperature, and pH. These hydrogels can be prepared by various types of DNA building blocks, such as branched double-stranded DNA, single-stranded DNA, X-shaped DNA or Y-shaped DNA through intermolecular i-motif structures, DNA hybridization, enzyme ligation, or enzyme polymerization.”