Uncategorized

Rift of the Rothschilds?… I have the solution! :D

Here gentlemen… I know Sir Evelyn and David are more than aware of it… I assume Lord Jacob is (associate Amb James Woolsey is advisory board member)

Here Nat! Take a look…

Rift of the Rothschilds, says ADAM HELLIKER
THE FIRST “important strength of the family is unity” declared octogenarian financier Sir Evelyn de Rothschild, when asked to pronounce on the resilience of the great banking dynasty whose name is synonymous with enormous wealth.

Uncategorized

It’s time to start taking the search for E.T. seriously, astronomers say (I do!)

 

It’s time to start taking the search for E.T. seriously, astronomers say

Some scientists are pushing for NASA to make looking for alien technology an official goal

Long an underfunded, fringe field of science, the search for extraterrestrial intelligence may be ready to go mainstream.
Astronomer Jason Wright is determined to see that happen. At a meeting in Seattle of the American Astronomical Society in January, Wright convened “a little ragtag group in a tiny room” to plot a course for putting the scientific field, known as SETI, on NASA’s agenda.
The group is writing a series of papers arguing that scientists should be searching the universe for “technosignatures” — any sign of alien technology, from radio signals to waste heat. The hope is that those papers will go into a report to Congress at the end of 2020 detailing the astronomical community’s priorities. That report, Astro 2020: Decadal Survey on Astronomy and Astrophysics, will determine which telescopes fly and which studies receive federal funding through the next decade.
“The stakes are high,” says Wright, of Penn State University. “If the decadal survey says, ‘SETI is a national science priority, and NSF and NASA need to fund it,’ they will do it.”
SETI searches date back to 1960, when astronomer Frank Drake used a radio telescope in Green Bank, W.Va., to listen for signals from an intelligent civilization (SN Online: 11/1/09). But NASA didn’t start a formal SETI program until 1992, only to see it canceled within a year by a skeptical Congress.
Private organizations picked up the baton, including the SETI Institute, founded in Mountain View, Calif., in 1985 by astronomer Jill Tarter — the inspiration for Jodie Foster’s character in the movie Contact (SN Online: 5/29/12). Then in 2015, Russian billionaires Yuri and Julia Milner launched the Breakthrough Initiatives to join the hunt for E.T. But the search for technosignatures still hasn’t become a more serious, self-sustaining scientific discipline, Wright says.
“If NASA were to declare technosignatures a scientific priority, then we would be able to apply for money to work on it. We would be able to train students to do it,” Wright says. “Then we could catch up” to more mature fields of astronomy, he says.
Wright himself is a relative newcomer to SETI, entering the field in 2014 with a study on searching for heat from alien technology. He was also one of a group to suggest that the oddly flickering “Tabby’s star” could be surrounded by an alien megastructure — and then to debunk that idea with more data (SN: 9/30/17, p. 11).

In the last five years, scientists’ attitudes toward the search for intelligent alien life have been changing, Wright says. SETI used to have a “giggle factor,” raising images of little green men, he says. And talking about SETI work as an astronomer was considered taboo, if not academic suicide. Now, not so much. “I have the pop sociology theory that the ascension of geek culture has something to do with it,” Wright says. “Now it’s like all the top movies are comic books and science fiction.”
When NASA requested a report in 2018 on what technosignatures are and how to look for them, SETI researchers thought hopefully that the space agency might be ready to get back into the SETI game. Colleagues tapped Wright to organize a meeting to prepare the technosignatures report, posted online December 20 at arXiv.org.
But Wright didn’t stop there. He convened the new workshop group with the goal of dividing up the work of writing at least nine papers on specific SETI opportunities for the decadal survey. By contrast, there was only one submission on SETI research, written by Tarter, in the 2010 decadal survey.
The SETI situation has also evolved since the 2009 launch of the Kepler space telescope, which discovered thousands of exoplanets before its mission ended in 2018 (SN Online: 10/30/18). Some of those planets outside our solar system are similar in size and temperature to Earth, raising hopes that they may also host life. Old arguments that planets like Earth are rare “don’t hold much water any longer,” Wright says.
The exoplanet rush has sparked a surge in research about biosignatures, signs of microbial life on other planets. NASA’s next big space telescope, the James Webb Space Telescope, is planning to search directly for signs of alien life in exoplanet atmospheres (SN: 4/30/16, p. 32). So far, though, no one has found any biosignatures, let alone technosignatures. But the focus on searching for the one makes the case for ignoring the other seem all the weaker, Wright says.
“Astrobiology and the search for life has become such a big part of what NASA does,” he says. “The fact that it won’t look for intelligent life has become ever more incongruous with its other activities.”

Uncategorized

Advanced Extraterrestrials as an Approximation to God (Avi Loeb!)… I’VE SOLVED THE FERMI PARADOX! :D

“I’VE SOLVED THE FERMI PARADOX! … Maybe we’re the weird kid. You know, the one who’s a bit odd, smells funny, likes to set fire to things… sadistic little fuck that kills animals… … probably been abused… the potential future serial killer! 😀 … the other kids run away and don’t want anything to do with him… poor bastard doesn’t really understand why”

“Fuck sake man!”

“When I say ‘been abused’… I mean hit by cometary impact 12,800 years ago, left us severely traumatised… … and a bit weird!” 😀 “Our species needs galactic counselling… space therapy! Can anyone recommend a good galactic species therapist?”
….
“Ayahuasca!”

comet
“Homo sapiens, it’s not you’re fault” “Yeah I know” “No listen kid, it’s not you’re fault” “I know” “No no you don’t… it’s not you’re fault”

Advanced Extraterrestrials as an Approximation to God

Our first encounter with E.T. technology could be as baffling to us as a smartphone would have been to a Neandertal
By Abraham Loeb on January 26, 2019

Despite the impression one gets from textbooks, our current knowledge of the universe represents a small island in a vast ocean of ignorance. The scientific enterprise is all about expanding the landmass of this island. And it is fun to engage in the activity of gaining knowledge; knowing everything in advance would have been much more boring. Still, it would be shocking to learn all at once of the discoveries of an alien civilization that been doing scientific and technological exploration for billions of years, in contrast to our mere few centuries. The eminent science fiction writer Arthur C. Clarke codified this idea in the third of his three laws : “Any sufficiently advanced technology is indistinguishable from magic.” Put another way, members of such a civilization would appear to us as a pretty good approximation to God.

Meeting a piece of advanced technological equipment developed by an extraterrestrial intelligence might resemble an imaginary encounter of ancient cave people with a modern cell phone. At first, they would interpret it as a shiny rock, not recognizing it as a communication device. The same thing might have happened in reaction to the first detection of an interstellar visitor to the solar system, ‘Oumuamua, which showed six peculiar properties but was nevertheless interpreted as a rock by mainstream astronomers.

Because it would likely be relatively small, most advanced equipment could only be recognized in the darkness of space when it comes close enough to our nearest lamppost, the sun. We can search for technological “keys” under this lamppost, but most of them will stay unnoticed if they pass far away. More fundamentally, one may wonder whether we are able to recognize technologies that were not already developed by us. After all, these technologies might feature subtle purposes—like the cell phone communication signals that a cave person would miss.

Is there something we might be missing already here and now? When looking around us, the most mysterious phenomenon we encounter routinely is the sophistication of complex life. Some scientists wondered whether life itself was seeded on Earth by an alien civilization in a process called “directed panspermia.” One can imagine a probe that brought the seeds of life in the form of microbes or instead a 3-D printer that produced these seeds out of the raw materials on Earth based on a prescribed blueprint. The universal left-handedness (chirality) of all life-forms on Earth without exception can be interpreted as stemming from a single panspermia event, be it natural (through a rock arriving from space) or artificial in origin . Even in this context, our imagination of what aliens might do will improve once we are able to produce synthetic life in the laboratory.

The number of targeted probes that are needed to seed life artificially in the habitable zone of a planetary systems is far smaller than the number of natural rocks that serve the same purpose on random trajectories. The advantage of 3-D printing of life from raw materials on a target planet is that natural DNA samples live a finite lifetime and may eventually disintegrate in a few million years, whereas artificial machinery can be constructed to last much longer.

At this time, our civilization is highly vulnerable to annihilation by self-inflicted wounds, such as nuclear wars or climate change, as well as external threats such as asteroid impacts or evolution of the sun. As much as the Earth appears to be a comfortable home for us right now, it would be prudent not to keep all our eggs in one basket. We should venture into space and seed objects beyond the Earth with life as we know it, thus reducing the risk of complete destruction and securing the longevity of things we care about.

If we ever find evidence for life on other objects and it all looks the same, or if extraterrestrial life would appear to be unusually clustered in space, we might realize that it has a common ancestry and panspermia is at play. The situation would be just like recognizing that too many kids in the neighborhood resemble the milkman.
If life was seeded artificially on Earth, one may wonder whether the seeders are checking on the outcome. And if so, the fact that we have not heard from them may indicate that they are disappointed. The experiment may have failed, or we are simply too slow to mature. Well, this may not come as a surprise given the irresponsible way we behave sometimes. Perhaps if we only knew that someone is looking over our shoulders, we would do better. It is not too late for us to find out, by using the best telescopes at our disposal.

Uncategorized

Is Britain in the wake of a zombie epidemic? It should be quarantined from the rest of the planet!

I’m fascinated by the ‘zombie apocalypse’ in modern movie folklore… because I don’t see much difference between Hollywood and real life in regards to this.
I’m always carrying self defence weapons (legal ones of course), but really I should be armed up with guns, crossbows, throwing knives etc.

The United Kingdom is in the wake of a real life zombie apocalypse! Like 28 Days Later (or the sequel 28 Weeks Later)… the majority of the population are now so stupid I regard them as a zombie species… and if I could, I would literally be shooting them in the face as soon as they tried infecting me with their ignorance and stupidity.
(Brexit: EU spy chiefs brand UK ‘unstable’ and warn of violence including rioting)

“Danny… what are you’re views on Hard Brexit or No Deal?”
CROSSBOW IN THE EYESOCKET STRAIGHT IN THE ‘BRAIN?’ :/

“Danny… do you think Conservative policies are to blame for…
“You?”
SHOTGUN SHELL BLOWS THEIR HEAD OFF! 

“But Danny, a socialist Left Labour Government would save the NHS, and wou…”
“Nothing can save you from the injuries you’re about sustain!”
LAWNMOWER IN THE FACE! 

GET AWAY FROM ME! How have you not figured any this out yet in the past eight years!
(‘Come baaaaack! We haven’t mentioned mental health in UK!’)
FUUUUUUUUUCK!

As long as it doesn’t effect The City Of London… which is effectively a state within a state, historically well protected from this sort of pointless shit (even the Queen has to ask permission to enter)…
city

Banks to flee London even if Brexit is cancelled

Damage inflicted in the Square Mile will be permanent, bankers say

The world’s biggest investment banks will not reverse plans to shift billions of dollars and thousands of jobs out of the UK even if Britain ends up staying in the European Union, senior bank executives and people with knowledge of the plans revealed to Financial News.
In a big blow to the City, at least eight of the largest investment banks in London, including Bank of America Merrill Lynch, Citigroup, Goldman Sachs and JPMorgan, have said they will shift a significant proportion of their operations to Europe irrespective of the outcome of Brexit.

The move would harm the City of London’s status as a global financial centre. Banks are already preparing to move hundreds of billions of dollars from London to the continent after Brexit. Deutsche Bank is reportedly set to shift €400bn from its balance sheet to Frankfurt, while JPMorgan will move €200bn to the German city.
“Everything is timetabled, and once the plane is on the runway, it’s not going to be called back,” said a UK head at a large investment bank based in the City.
The head of investment banking at another company with a significant UK presence said there was no chance its plans would be reversed. “We have spent money on this, we have a structure that we like. The staff we have moved out would not go back to London.”
The top 10 investment banks have already spent at least £1bn on preparing for the UK’s impending exit from the EU. This figure could spiral further, and the shift towards Europe means London will become a much smaller financial centre whatever the outcome of Brexit.
“You cannot put the genie back in the bottle,” said Andrew Gray, global head of Brexit for financial services at PwC, the accountancy firm. “Banks have committed to a business model with regulatory bodies. To not deliver on those plans would be problematic.”

“London has permanently lost market share,” added a chief executive of an international bank with a significant presence in the UK.
British Prime Minister Theresa May is currently engaged in cross-party talks after having her Brexit deal thrown out by parliament earlier this month. The prospect of Britain leaving the EU without a deal has increased, but the City’s largest investment banks have been planning for a worst-case scenario under which they would lose access to the single market on March 29.
As well as a no-deal scenario, May’s arrangement could be sent back to Parliament for a second vote or she could return to the EU to renegotiate. If talks hit a deadlock it could trigger a second referendum or even a general election.
According to a survey by EY, the accountancy firm, 7,000 jobs could leave London. The financial services sector employed 1.1 million people in the UK in 2017, according to the latest statistics from the House of Commons Library, and contributed £119bn to the UK economy, or 6.5% of total economic output.
Staff moves are already underway at large investment banks. Goldman Sachs, which eventually plans to move 700 jobs to Europe because of Brexit, has shifted around 80 bankers to the continent as part of a broader push in region, while up to 20 fixed income sales staff have been relocated to Paris. Morgan Stanley plans to have 50 bankers in Frankfurt as part of initial relocations, while Deutsche Bank, BNP Paribas, Credit Agricole, Societe Generale and UBS have all asked staff to move.
Longer term, bank executives say Brexit will change the way they recruit staff.
“London would have been the natural choice to hire new bankers. Now, after the investment we’ve made in Europe, if someone leaves in the UK or we want to recruit someone, we’re just as likely to base them in Frankfurt or Paris,” said one European chief executive of a US investment bank.
Banks are unlikely to move people back in the event Brexit is overturned, said Jenni Hibbert, global practice managing partner at Heidrick & Struggles Financial Services, the recruiter. “If they do, it won’t happen overnight”, given the cost and effort involved.
The damage inflicted in the Square Mile will be permanent, said another head of investment banking. “London as a financial centre will remain, but will be severely diminished.”

paris

Merrill Lynch set to move hundreds of jobs to Paris in Brexit hammerblow
(FUCKING PARIS!)

Bank of America Merrill Lynch is poised to move hundreds of London staff to Paris next week as it implements its Brexit plans.
The Standard understands about 200 London sales and support staff will start moving to the bank’s newly refurbished offices in the French capital from next Monday as the bank moves its European broker-dealer hub from London.

Although broker-dealing will be run out of new offices in Paris’s Rue La Boétie, BAML’s European headquarters will be run from Dublin, where 100 staff have already moved.

Like most investment banks with European headquarters in London, BAML has set its Brexit contingency planning for a no-deal exit.
BAML joins Goldman Sachs, JPMorgan, Citigroup and other major banks in moving of staff out of London, with little likelihood of their returning. One senior executive working on his bank’s Brexit preparations said: “Over the past decade, banks have been concentrating their European businesses in London, but that’s over. The political instability in the UK has shown us the dangers of putting all our eggs in one basket. We have passed Peak City.”
Most major banks by now have set up their legal entities in the EU, one banker said. “The government hopes to grow non-EU and Asian business through London, and that may happen. But the learnings of the last year are that you want some optionality.” This means billions of dollars leaving the UK. JPMorgan alone wants to shift €200 billion (£173 billion) of its balance sheet to Frankfurt, Financial News says.

Now Banks Look Like They’re Worried About Brexit

Lenders have moved business out of London for two quarters in a row.
bank.jpg

The exodus from London is getting real.

Ever since the U.K. voted to leave the European Union in June 2016, people have been watching for signs of how the prospect might affect London’s role as a global financial center. It stood to reason that it should: Assuming the breakup meant that the U.K. units of global banks would lose their passports to sell services throughout the EU, they would have to move staff and assets onto the continent — to Paris, to Frankfurt, to Dublin.

Yet for more than a year, bankers didn’t appear to be putting their money where their mouths were. Sure, they talked about moving. But their balance sheets told a different story: Cross-border lending from the U.K. kept growing, suggesting that global financial institutions were doing even more business out of their London operations.

Now it looks like the tide turned in early 2018, as the government of Prime Minister Theresa May edged closer to the Brexit deadline with no clear plan for a friendly separation. According to the latest data from the Bank for International Settlements, the cross-border claims of U.K.-located banks declined for two quarters in a row from April, by a total of almost $200 billion.

Getting Out
So who stands to gain? On that point, the data are less clear. So far, only France has seen a significant increase in cross-border lending, indicating that Paris might be the biggest beneficiary.
How About Paris?
London has a lot to recommend it as a financial hub: culture, transportation connections, a critical mass of educated people and all the benefits of agglomeration. Apparently, a big enough political blunder can overcome even these advantages.

Erm… we where kind of thinking The City Of London could become an even bigger offshore tax haven that it already is? :/
(already the biggest in the world)

Uncategorized

The Mysteries of the Solar Plasmasphere -Brett Holverstott… … and EU spy chiefs brand UK ‘unstable’ (we’re way past the point of unstable)

Wait, wait, before we continue to discuss the greatest scientific discovery in hundreds of years… … “More than 40% of people think Brexit has affected their mental health in the past two years”… arrrrggghhh ha ha ha ha ha! :’D I am fucking crying in fits of laughter at this! :”D Fuck… what else does it say?
Brexit: EU spy chiefs brand UK ‘unstable’ and warn of violence including rioting…. STOP! :’D You’re killing me! My sides a fucking hurting! :”D
“Analysis of the threat levels in Britain is being shared at the top of the EU as we formulate policy for the years ahead. The assessment is that violence is almost inevitable no matter what.
“They are worried that if the current deal goes through the right-wing will kick off. If there’s no deal everybody will object and kick off. If there’s a second referendum, the right will kick off. The right kicking off is causing most concern.”
“This analysis is being kept very quiet for ob­­­­vious reasons.”
The report, based on information from the intelligence services in member states, assessed Britain as “unstable” and likely to remain so for years. British security sources said MI5 was not involved in the analysis.
GOOD! FUCKNG FAILED, ILLITERATE, MENTALLY UNSTABLE, DERANGED NATION… HOPE IT FUCKING FAILS! … ‘unstable’ :’D brilliant! :”D

brexit 1

Anyway Israel… hydrino energy… the greatest scientific discovery in hundreds of years what’s the plan of action here? Rothschild? What’s happening here homie? I keep saying the same thing, but…
“For the first time in human history, the power of the Sun has been brought down to planet Earth”

The Mysteries of the Solar Plasmasphere

How new experiments in plasma physics, and the Parker Solar Probe, might unlock the Sun’s secret source of power.

sun
Beautiful arcs above the solar surface called coronal loops. Illustration by Matt Schmidt.

Almost all of the luminous universe — not counting ‘dark’ stuff — is hydrogen, at millions of degrees, and billions of atmospheres, crushed inside stars. Electrons are splitting off atoms and emitting light in the process. This state of matter is called a plasma.
In August of last year, NASA launched the Parker Solar Probe. In a series of ellipsoidal passes, it will fly through the solar corona — the sun’s atmosphere — capturing data. Like a child sticking his finger into a jar, poking something is usually the first step toward unraveling a scientific mystery.
I had the joy of getting a good look at the corona in 2017. The corona is what you see when an eclipse reaches totality, the beautiful luminous arms of light that reach out in all directions; the result of a cloud of fast-moving electrons scattering light as it diffuses out into space.
The Parker probe will fly through these arms, and scientists hope that it will begin to address the huge gaps in our understanding of the sun.
The corona is observed to be hot. This might not surprise you. But it actually rises in temperature from six thousand degrees at the surface to millions of degrees in the corona. That’s weird. We would expect the atmosphere to fall in temperature as you get farther from the heat source, and the pressure drops, and heat is radiated out to space.
The energy needed to supply this missing heat is only .01% of the total solar power output, but scientists have not completely explained how the energy gets from point A to B. Energy typically flows from hot to cold; not from cold to hot.
The best theories suggest that powerful electric and magnetic fields transport energy from the interior to the far reaches of the atmosphere. Exactly how this works is not fully clear.
For the purpose of aiding in the resolution of this mystery, Stuart Bale from UC Berkeley has equipped the probe with a series of magnometers and sensors to directly read the magnetic fields inside the corona.
There are also instruments to detect the particles whizzing by as the probe plummets through the corona. The probe will be able to identify electrons, protons, various ions, and isotopes of helium. These particles start off in the corona, but end up as a solar wind, expanding into space.
Eugene Parker, for whom the probe was name, first suggested that the corona must be undergoing constant supersonic expansion into the vacuum of space. Scientists confirmed this, but found fast particles traveling more quickly than expected. Something is accelerating them; and whatever it is seems to have something to do with solar activity.
Galileo was the first to observe the sun and notice spots on the surface. We now know the Sun is a tumultuous place, with incredibly strong magnetic field lines laced among explosions, giant arcs (coronal loops), dark spots (coronal holes) mass ejections, and flares that emit everything from radio waves to gamma rays while sending shocks that ripple across the entire solar disk. ‘Fast’ solar wind is often correlated with these events, but little is known about what causes the events themselves.
These are some of the mysteries the Parker probe hopes to answer.

How to Make a Sun in a Jar
While NASA sends probes into the solar corona, an ISF funded team is creating a sun in a jar, hoping to recreate the conditions of the corona, and then poke it from the comfort of the laboratory.
In 2014, Montgomery Childs led the first phase of the Stellar Atmospheric Function in Regulation Experiment (SAFIRE) and his team created an experiment in which DC power was applied to a spherical metal anode that had been positioned in a glass bell jar, filled with a low pressure of hydrogen gas.
As the power was increased, the gas around the anode began to glow, creating a plasma. First, small violet glowing tufts of plasma spaced themselves out around the sphere. Then, at higher power, a series of nested spherical shells emerged.
These ‘double layers’ were made up of segregated, alternating layers of positive and negative charge, glowing beautifully in blue or violet.

sun1.jpg
Plasma tufts and double layers on a spherical anode in the SAFIRE experiments. Illustration by Matt Schmidt.

The team discovered that although the input power was only about 2 kW, there were short bursts of power that registered as millions of Watts. Perhaps energy was being stored in the plasma, and released in violent bursts.
In 2015, the team decided to dramatically scale up the experiment. They manufactured a large meter-wide stainless steel cylinder. The spherical metal anode could be supplied with up to 200 kW of power, and a probe could be injected into the experiment, moved around on multiple axes, and pulled out again.
The hydrogen gas was actually injected into the anode so it would then diffuse out through the sphere during the experiment. (This is just cool.) And it does more closly replicate the behavior of the corona, in which particles are shedding off the surface.
With the new experiment, the team produced a wider variety of tuft configurations and double layers while taking spectroscopic measurements and voltage readings in situ.
There were some surprises.
In one experiment, a sustained input power of only 182 W created a plasma so hot that it vaporized the tip of a Tungsten probe. The temperature of the plasma exceeded expectations by several thousand degrees — it was as hot as the surface of the sun!
A plasma is a weird state of matter. There may be charged species (electrons or ions) participating in chemical reactions and being heated directly, while other species are cool — heated indirectly through collisions or absorbing light.
The plasma could very well have been at different temperatures simultaneously, and the experts I spoke with were not convinced that the team was experienced enough in plasma physics to appreciate this.
The SAFIRE team determined that the double layers were glowing regions of high-energy electrons and ions, much hotter than the anode itself. The plasma was also producing ultraviolet light, inexplicably.
The team felt they had discovered something new, what they suggested was some kind of “electrochemical catalytic process,” but were unable to convincingly conclude what was happening at an atomic and molecular level.
Nevertheless, they had been true to their goal of recreating some features and mysteries we associate with the solar corona.

New Hydrogen Chemistry
Some clue to the process in the corona may be revealed by the work of a privately-funded team led by Randell Mills, who for twenty years have been demonstrating unusual results.
A typical experiment was conducted in a pyrex vessel, within which was two electrodes. Hydrogen gas with a small percentage of argon was flowed through the cell, which was held at very low pressure.
When a voltage is initiated between the electrodes, the cell warmed and a plasma formed between the electrodes, giving off a brilliant glow.

sun2.png
A Mills-type Hydrogen Plasma Cell. Illustration by Matt Schmidt.

In any plasma, atoms are bouncing around at high energy while absorbing and emitting light. The exact frequencies of light depends on which energy level is being excited in the atom. Hydrogen emits characteristic lines known as the Lyman, Balmer, and Paschen series.
Since at least 1987, some researchers had started to notice that in pure hydrogen and mixed hydrogen plasmas, the Balmer series of lines were becoming unusually broad. This broadening is the result of light being Doppler-shifted due to the atoms moving fast through the plasma. So broadening tells you about temperature.
Mills’s team stumbled on this phenomena a decade later; it appeared that the hydrogen in the plasma was twenty times hotter than other species in the cell.
This was unusual, as there are no known chemical reactions between hydrogen and argon that lead to excessive heating and light emission.
In 2000, Mills’s team published their first paper relating 138 experimental trials, showing brilliant light emission and excess power gains from hydrogen plasma cells with a variety of gas mixtures and conditions. In the next ten years, they published 60 more papers in peer-reviewed journals.
Over this time, Mills’s team maintained close ties with several outside collaborators, including Jonathan Phillips, a professor at Penn State who later went to Los Alamos National Lab; Hans Conrads, director for the Institute for Low Temperature Plasma Physics at the Moritz Arndt University in Germany; and Gerrit Kroesen, a renowned plasma physicist at the Technical University at Einhoven.
Some authors in the literature felt that the unusual broadening could be explained by the acceleration of charged species in the field between the electrodes, but in a series of papers of increasing sophistication, Mills and Phillips disconfirmed this hypothesis.
They found that the hottest species in the cell were neutral, not charged; that the broadening did occur far from the electric field produced by the electrodes; that the fast hydrogen was moving both parallel and perpendicular to the field, and that the plasmas only exhibited this behavior with certain gas mixtures.
This was all very weird. But there was more.
In a special kind of cell using a filament presoaked in potassium carbonate, Conrads found that he could initiate Mills’s plasmas at extremely low voltages And, when the power was turned off, it would continue to glow for 2 seconds, showing there was a chemical process of some kind occurring.
“Something from the Mills cell is releasing energy, and remarkably high energy, that is clear.”
— Hans Conrads (1999 ACS Conference)
Mills’s cells also demonstrated cells with sustained line inversion, showing that something in the plasma was pumping hydrogen atoms to very high excited states, with relatively fewer low-energy excitations — something that could be useful for new laser tech.
The temperature required to excite the hydrogen lines was at least 15,000 degrees. Never before has a chemical process excited the Lyman alpha emissions from hydrogen.
The best explanation was that there was some kind of chemical reaction happening in the cell. The reaction involved hydrogen, produced heat and light, and very high-energy hydrogen excitations.
And — it was new to science.

The Mystery of the Core
The mystery of the heating of the solar corona pales, perhaps with the mystery of the heating of the core.
The majority of the Sun’s mass, and nearly all of its power-producing fusion activity, is contained deep in the interior. But nature has given us a way to see deep below the surface, with a kind of light that effortlessly passes through the outer layers of the Sun: the neutrino.
Neutrinos are emitted from fusion reactions and carry away some of the energy, but they react with matter rarely — usually they just pass through.
In 1964, Raymond Davis pioneered a project to detect neutrinos. It had been found that a Chlorine-37 nucleus was very good at absorbing neutrinos. When it did, it formed an Argon-37 nucleus, which would allow a detector to count the events.
So a 100,000 gallon tank of unbelievably pure tetrachloroethane was installed deep underground, in a mine at Homestake. This was to protect the tank from false positives created by cosmic rays striking the earth’s atmosphere and spewing muons. The muons would be blocked by 4,000 feet of rock, but the neutrinos would easily get through.

sun3.png
A neutrino detector. Illustration by Matt Schmidt.

The experiment worked, but it only yielded 26% of the neutrinos predicted by theory to be produced by the fusion occurring in the Sun.
For 35 years, the team lobbied the scientific community to dedicate more resources to the problem. But — as often happens— it was largely ignored. Decades of work by theorists did little to move the calculations for the neutrinos produced by the Sun.
Today, the most accepted theory is that neutrinos can change (“oscillate”) between kinds. Perhaps an electron neutrino can become a muon neutrino or tau neutrino, but these have different energies, and you need different experiments to see them.
In subsequent experiments, Russia built two detectors with gallium and Japan built detectors using water and heavy water. Each detector had a characteristic range of neutrinos it could observe. But in all cases, there was a serious discrepancy between theory and reality.
The neutrino deficit remained on the order of 60%.
John Bahcall reflected: “If you can measure something new with reasonable accuracy, then you have a chance to discover something important. The history of astronomy shows that, very likely, what you will discover is not what you were looking for.”
The history of astronomy shows that, very likely, what you will discover is not what you were looking for.
– John Bahcall

The State Below the Ground State
The hydrogen atom is the simplest atom in nature, composed of one (negatively-charged) electron orbiting one (postively-charged) proton. This is, in fact, the only system that can be solved exactly by our theory of nature on the atomic scale — quantum mechanics, which leads many physicists to feel that we know everything there is to know about hydrogen.
But mysteries from dark matter to the behavior of the sun, coupled with new experiments in hydrogen chemistry, tell a different story.
It is well-know that the electron can absorb light and jump to excited state orbits, but these are unstable, and after only a fraction of a second, it falls back to the only stable orbit, the ground state.
Since at least 1990, Mills had theorized that this was not all the atom was capable of. Using a new model of the electron based on classical electrodynamics , Mills predicted that the electron in the hydrogen atom ought to be able to fall to orbits below the ground state.
In fact, Mills predicted a series of stable orbits at fractional integer multiples (1/2, 1/3, 1/4, etc…) of the ground state orbit.
These smaller atoms, what Mills called “hydrinos” had never been imagined before, and no evidence had ever been recognized by a century of research in hydrogen chemistry — although some of it was there.
Mills rolled up his sleeves and dedicated his career to hydrino research, first experimenting with electrochemical cells before experimenting with gas-phase plasma cells. After thirty years, his team has a pretty good handle on the process they call hydrino catalysis.
The chemistry of hydrino is unique. Unlike excited state orbits which form naturally by absorbing light, hydrogen atoms must undergo a collision with another species capable of serving as a catalyst.
The catalyst undergoes resonant coupling with the hydrogen atom, pulling some of the energy from its orbit, and releasing that energy by ionizing electrons or breaking bonds.
When the hydrogen atom shrinks to form a hydrino, it can do one of two things. It can emit high-energy light, or it can collide with another atom and launch it away at high velocity, creating ‘fast’ hydrogen.
The light, although emitted as high as EUV and soft X-rays, will be absorbed by other species in the plasma, converting down to visible and ultraviolet light. If a hydrogen atom absorbs this light, or if it collides with something in the plasma moving fast enough, it will emit light that is high-energy, such as the Lyman alpha.

sun4.png
Two plasma cells used to study line broadening. Illustration by Matt Schmidt

There are many theoretically feasible catalysts — helium ion, argon, potassium, lithium, or even three-body collisions between hydrogen atoms. Even hydrinos themselves can also act as a catalyst for other hydrino transitions. This would explain how Mills and Phillips were able to demonstrate some line broadening even in pure hydrogen plasmas.
Overall, Mills felt that he had discovered what he was looking for — an energetic reaction that utilized hydrogen along with a chemically selective catalyst, that produced heat, high-energy light, and could produce inversion of the hydrogen excited states.
This process could also explain the inexplicable source of heating within the SAFIRE experiments.
Hydrino atoms can also recombine into hydrino gas dimers, which can be analyzed chemically. Mills has shown rovibrational transitions corresponding to molecules with an interatomic distance that is an integer fraction (1/2, 1/3, 1/4, etc…) of conventional hydrogen gas. Hydrino hydrides can also be detected by upfield-shifted NMR signatures. Mills’s team has developed a close relationship with Rowan University to replicate these signatures.
All of which, seems to confirm Mills’s now thirty-year-old hypothesis.

The Hybrid Hydrino-Fusion Star
The work of Mills’s team and collaborators has often generated knee-jerk reactions from physicists who felt that fractional orbits were, in principle, absurd. One quip from Phillip Anderson suggested Mills’s discovery would “fuck around with the energy process in the Sun.”
In my experience these reactions have little to do with the experimental data, and everything to do with a perceived threat to the quantum model.
But perhaps, Anderson was on to something.
Mills has proposed that hydrino reactions could account for a substantial amount of the Sun’s core power — perhaps the missing 40%. Mills has also proposed that hydrino reactions could be actively warming the corona, far into its luminous arms — as a massively scaled-up gas-phase plasma cell.
Millions of degrees, however, is still a bit far fetched for a chemical reaction in the gas phase. It may turn out that the corona is not so hot. Our evidence for its million-degree temperature is the deeply-ionized oxygen and iron atoms we see spectroscopically. But we assume this is caused thermally. It could also be caused by absorbing high-energy light from hydrino reactions. EUV light doesn’t travel far in a gas; quite likely we are not seeing the majority of it from Earth.
Hydrino reactions may help explain solar activity. It could explain why coronal loops, that arc beautifully high above the Sun, glow in the EUV and X-ray bands.
In 1969, an EUV spectrometer was flown in an Aerobee rocket launched from White Sands. It was flown during a period of some solar activity, and recorded the spectrum of the entire solar disk. When Mills analyzed this data, he found many lines that could be assigned to hydrino transitions. Some of these lines have no known assignments in the literature, others overlap with some known lines.
Could the Sun be a hybrid fusion-hydrino star?
If this is true, we might also find these lines in other stars.
White dwarfs, by chance, are very strong EUV emitters, and are made up of heavier elements (spent fuel) which they cannot fuse, though they still have some helium and hydrogen lingering on the surface.
When we glance at the spectrum of a white dwarf, we see a smooth continuum band with clear cut-offs that perfectly correspond to the H to H(1/2) transition, the H to H(1/3) transition, and the H to H(1/4) transition.
A white dwarf may have exhausted its nuclear energy, but it continues to glow, powered by the light of hydrogen chemistry.

Afterword
The results of the first pass of the Parker Solar Probe through the corona are soon to be released. I will update the article as the results come in.
Plasma physics is a messy business, and scientific prediction in these circumstances is risky even for experts in the field. But I will gently lob a few predictions into the public sphere:
1 – We might see little or no evidence that the Sun’s magnetic field is heating the outer corona; and lower voltages than generally expected.
2 – We might see that the outer corona is not as hot as we expected, due to photoionization of atoms to deep states by high-energy light from the photosphere and ambiently in the corona.
3 – We might inexplicably see neutral species accelerated the fastest in the corona, indicating an unknown chemical process is taking place rather than field acceleration.
Astrophysicists are hoping the Parker Solar Probe gives them a breakthrough. It may discover something they did not expect to find: a paradigm-shifting revision to our understanding of the processes that power our nearest star.
How cool would that be.

Brett Holverstott is author of the book Randell Mills and the Search for Hydrino Energy. This is the second in a series of articles on Mills that adapt content from the book.